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Abstract 

Digital Soil Mapping (DSM) has revolutionized the field of soil science by integrating advanced 

statistical techniques, environmental data, and remote sensing technologies to create high-resolution 

soil maps. Unlike traditional soil mapping, which relies on qualitative estimates and is labor-intensive, 

DSM provides a more efficient and reproducible approach to soil characterization. This paper explores 

the advancements, applications, and challenges of DSM, highlighting its role in precision agriculture, 

environment management, and land-use planning. To accomplish these objectives, a narrative review 

approach was employed, facilitating a comprehensive exploration of the topic through the collection, 

summarization, and synthesis of findings from previous research. Previous research has demonstrated 

that Mapping DSM has significantly enhanced the accuracy and accessibility of soil data.  However, 

several challenges persist, including data availability, model selection, and uncertainty quantification. 

The future trajectory of DSM is closely dependent on technological advancements, particularly in ma-

chine learning, big data analytics, and real-time soil monitoring. Overcoming these challenges requires 

a multidisciplinary approach involving interdisciplinary collaboration, policy support, and the develop-

ment of open-source tools. These findings underscore the need for continued investment in innovative 

technologies and collaborative frameworks to maximize DSM’s potential in sustainable land manage-

ment and agricultural decision-making. 
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 نقشه برداری دیجیتالی خاک: چالش ها و چشم اندازهای آینده 
 ۱محمد داود حیدری ، ۲ی ناص  ازخانیا، ۱صدیقی احمد سیر 

 ، پوهنځی زراعت، پوهنتون کابلخاکشانی و آبیاری دیپارتمنت ۱
 زراعت، پوهنتون کابل  ځیپوهن ،ی اقتصاد و توسعه زراعت پارتمنتید۲

 خلاصه
 ی و تکنالوژ  یطیمعلومات مح ،پیشرهههفته  ی و یاحصههها  ی ها  کیتخن دیتوح –( با Digital Soil Mappingخاک )  یتلیجید  ی بردار نقشهههه

کرده اسههتب برخ      جادیا  یخاکشههناسهه در یخاک با وضههوب باا انق ب ی نقشههه ها هیته (، جهتRemote sensingسههنجا از راه دور )
روش  (  DSMخاک )  یتلیجید ی بردار اسهت، نقشهه ادیز  ی بشره ی رو ین  ازمندیبوده و ن یفیک ی ها  نیبه تخم یمتک خاک که  یمعمول  ی بردار نقشهه

کاربردها و   ها،شرهههفتیپ  یبه بررسههه  مطالعه  نیا دیب پاراگرا  جددهدیخاک ارا ه م اتیخصهههوصههه ییشهههناسههها ی کارآمدتر و قابل تکرار برا
ب  سهازد یبرجسهته م نیاسهتفاده زم  ی و  پ نگذار   سهتیزطیمح  تیر یمد  ق،یدر زراعت دق  اپرداخته و نقا آن ر   یتلیجید ینقشهه کشه  ی هاچالا
امکان   ،یقبل قاتیتحق  ی هاافتهی بیو ترک  ی سهاز خ صهه  ،ی اسهتفاده شهده که با جمآ آور   روایتی  ی مرور   اهدا ، از   روش  نیبه ا یابیدسهت ی برا
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بودن معلومات    یخاک  دقت و قابل دسهسسه  یتلیجید ی بردار که نقشهه  انددهنشهان دا  یقبل قاتیب تحقسهازدیجامآ موضهو  را فراهم م  یبررسه
و عدم    به معلومات، انتخاب مودل مناسههب  یچون  دسههسسهه  ی متعدد ی هاحال، چالا نیداده اسههتب با ا  ایافزا ی ر یطور چشههمگخاک را به

 ی ر یادگی  نهیبخصهو  در زم  ،ی تکنالوژ   ی هاشرهفتیبه  پ یخاک متک  یتلیجید  ی بردار نقشهه  ندهیآ ر یموجود اسهتب مسه ی سهاز  یدر کم  نانیاطم
ب غلبه بر  باشهد ی( مreal-time soil monitoringخاک ) تیدرنگ بر وضهع یبزرگ و نظارت ب ی ناید  لی(، تحلmachine learning) نیماشه
 open-sourceل قابل دسهس  )یو توسهعه وسها  یسهیپال تیچند جانبه، حما ی ها ی چند جانبه بوده که همکار   ی کردیرو  ازمندیها نچالا  نیا

toolsدیمشهههسک ته ک ی همکهار  ی ههانوآورانهه و چهارچوب ی هها ی مسهههتمر در تکنهالوژ  ی گهذار هیهبر ضرورت سرمها ههاافتههیه  نیب اردیگی( را در بر م  
 کردب ی بردار رهبه یزراعت ی های ر یگمیو تصم نیزم داریپا تیر ی( در مدDSMخاک ) یتلیجید ی بردار کامل نقشه تیدارند تا بتوان از ظرف

 سنجا از راه دور، مشخصات خاکزراعت، متغیرهای محیطی، یادګیری ماشین،  کلیدی: کلیمات
 

Introduction 

Soil is essential for both human and environmental health, playing a vital role in ecological pro-

cesses. The demand for high-resolution quantitative soil data is increasing in various sectors, including 

agriculture, forestry, mining, land reclamation, and environmental science. To meet this demand, soil 

scientists are developing advanced mapping techniques that offer more precise and comprehensive soil 

information. By integrating soil observations with models of soil-landscape relationships, soil scientists 

analyze spatial variations in soil (Nelson, 2021). 

Soil mapping involves compiling and distributing this information for broader applications. Tradi-

tional soil mapping depends on mental models and generates sharply defined map units with qualitative 

accuracy and uncertainty estimates.  This approach is time-consuming, resource-intensive, and lacks 

reproducibility and the ability to be updated. To overcome these limitations, Digital Soil Mapping 

(DSM) has emerged as an innovative method that combines spatial data, environmental covariates, and 

statistical models to predict soil properties and classifications across various landscapes (Lagacherie 

and McBratney, 2008). Advances in geographic information systems (GIS), remote sensing, and com-

puter processing have made soil mapping more quantitative (Nelson, 2021). 

The main goal of DSM is to create spatial soil information systems (SSINFOS) that help users make 

informed decisions on agricultural and environmental matters (McBratney et al., 2003). DSM has trans-

formed the way soil information is represented and understood. By utilizing advanced statistical tech-

niques and integrating extensive environmental data, DSM facilitates the creation of detailed gridded 

soil prediction maps that can be updated dynamically as new data becomes available (Nelson, 2021). 

This method connects soil properties to environmental factors such as climate, topography, vegetation, 

and land use, greatly enhancing the accuracy of soil maps for applications in agriculture, ecological 

studies, and beyond (McBratney et al., 2003). 

A key application of DSM Is In pre”Isio’ agriculture, where It has been successfully used to predict 

soil properties, offering valuable insights for maximizing crop yields while reducing environmental 

impacts. For instance, DSM has been applied in regional precision agriculture, showcasing its ability to 

provide detailed soil information that promotes sustainable farming practices. The incorporation of re-

mote sensing data, including satellite imagery and airborne sensors, has further improved DSM by de-

livering high-resolution, large-scale spatial information for soil mapping (Söderström et al., 2016). 

Digital Soil Mapping (DSM) improves soil-mapping accuracy by integrating existing soil data with 

environmental variables. This method combines historical soil information with detailed environmental 

factors, allowing for the creation of precise soil maps, particularly in regions with limited or outdated 

field data. By utilizing legacy soil data and extensive spatial environmental data, DSM techniques es-

tablish quantitative relationships between soil properties and environmental covariates, enabling the 

production of accurate soil maps (Nussbaum et al., 2018). This integration aids in the creation of de-

tailed soil maps, which are particularly useful in areas where traditional soil surveys are limited or not 
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feasible. Additionally, DSM techniques like machine learning and geostatistics have played a crucial 

role in reducing uncertainty and improving the accuracy of soil property predictions (Padarian et al., 

2019). 

Several drawbacks of digital methods are evident: firstly, and most significantly, their soil geogra-

phy theory relies on correlating observations with environmental covariates that are meant to represent 

soil-forming factors. This is much less comprehensive than a soil-geomorphic landscape analysis con-

ducted by an experienced surveyor. If these covariates do not fully represent the factors, dissimilar soils 

may be grouped together. Some covariates are either absent or too coarse to be useful, particularly 

surficial lithology. Furthermore, the soil-forming factor of time, or the age of the landform, is difficult 

to represent through covariates, as it requires geomorphic analysis and estimates of past climates. Sec-

ondly, these models can only function with the profile observations they are provided, which rarely 

cover the entire soil-geographic space because most field sampling plans were not designed to support 

DSM. In fact, such plans have only recently been developed and are still in the process of being refined 

(Rossiter, 2021). 

Looking forward, the future of DSM is closely tied to advancements in machine learning, big data 

analytics, and real-time soil monitoring technologies. The integration of deep learning techniques is 

expected to improve the predictive accuracy of DSM models, while real-time soil sensing technologies 

have the potential to provide dynamic soil data, allowing for more informed decision-making in land 

management (Padarian et al., 2019). 

This article provides an in-depth analysis of the challenges and prospects of DSM. It discusses key 

challenges such as data quality and availability, model selection and complexity, the incorporation of 

pedological knowledge, uncertainty quantification, and the need for computational resources. Addition-

ally, the article explores future opportunities, including advancements in remote sensing, the integration 

of machine learning and process-based models, the potential of crowdsourcing and citizen science, the 

development of open-source tools, and the importance of policy support and funding. By addressing 

these challenges and highlighting emerging prospects, this review underscores DSM’s potential to 

transform soil science and enhance sustainable agricultural practices globally. 

 

Methodology 

This narrative review was conducted to examine the current challenges, and future prospects of 

Digital Soil Mapping (DSM). The review is based on an extensive analysis of peer-reviewed journal 

articles, books, and relevant theses from reputable sources. The literature was selected from various 

academic databases and publishing platforms. Additionally, a master’s thesis on predictive DSM by 

Nelson, (2021) was reviewed to incorporate insights from prior academic research. The selection pro-

cess involved identifying key publications related to DSM, focusing on studies addressing data quality, 

model selection, pedological knowledge integration, uncertainty quantification, and computational re-

sources. Furthermore, literature exploring advancements in remote sensing, machine learning integra-

tion, crowdsourcing, open-source tools, and policy support was analyzed to provide a comprehensive 

perspective on future developments. Relevant keywords such as Digital Soil Mapping, soil prediction 

models, remote sensing in soil mapping, machine learning in soil science, and “uncertainty in soil map-

ping were used to search for pertinent studies. Preference was given to recent publications (within the 

last 10 years) to ensure that the review reflects the most up-to-date findings and technological advance-

ments in DSM. Older but foundational studies were also included to provide historical context. 

By synthesizing insights from multiple sources, this review aims to present a structured analysis of 

the challenges and opportunities in DSM, offering a foundation for further research and application in 

the field. 

 



 ل ههب  ۱۴۰۴(  ۶۳) ۲ ګڼه /64

 

 

Results 

Digital Soil Mapping (DSM) combines soil observations with environmental factors through nu-

merical models, providing a more precise and efficient method than conventional approaches. Never-

theless, DSM still encounters challenges, including issues related to data accessibility, model selection, 

and the quantification of uncertainty. These challenges need to be overcome to fully realize its potential 

(McBratney et al., 2003). 

 

Challenges and Future Prospects in Digital Soil Mapping 

This article presents a comprehensive analysis of the challenges and prospects of digital soil map-

ping through thematic analysis. It critically examines key obstacles and potential outcomes, providing 

insights into current limitations and opportunities for further development.  

 

Present Challenges  

(i) Data Availability and Quality: The effectiveness of DSM is highly dependent on the availabil-

ity and quality of data. In numerous areas, particularly in developing nations, there is a lack of 

high-resolution soil data and environmental covariates, which impedes the creation of accurate 

digital soil maps. Furthermore, variations in data collection techniques and standards can intro-

duce inaccuracies in DSM results (Chen et al., 2022). 

(ii) Model Selection and Complexity: Choosing the right predictive models is essential for DSM. 

Although machine learning algorithms are commonly used, selecting a model that strikes the 

right balance between complexity and interpretability presents challenges. Complex models may 

perform excellently on training data but struggle with new data due to overfitting. On the other 

hand, simpler models might fail to capture the complex interactions between soil properties and 

environmental factors (Wadoux et al., 2020). 

(iii) Uncertainty Quantification: Quantifying and communicating the uncertainty inherent in DSM 

outputs is essential for informed decision-making. However, many DSM studies fail to properly 

address uncertainty, which can result in overconfidence in the findings. Establishing standardized 

approaches for uncertainty assessment and effectively communicating this information to end-

users continues to be a major challenge (Chen et al., 2022). 

(iv) Incorporation of Pedological Knowledge: Incorporating traditional pedological knowledge 

into DSM continues to be a challenge. Many DSM methods rely predominantly on statistical 

correlations, which may neglect established principles of soil science. It is crucial to bridge the 

gap between data-driven models and expert knowledge to create meaningful and accurate soil 

maps (Wadoux et al., 2020). 

(v) Computational Resources: DSM processes, particularly those involving large datasets and com-

plex models, demand significant computational resources. Limited access to high-performance 

computing infrastructure can pose a challenge for researchers and practitioners, especially in re-

source-limited environments (Chen et al., 2022). 

(vi) Low Sampling Density and Spatial Clustering: Soil observations are often sparse and unevenly 

distributed, with samples clustered in accessible areas such as near roads or research stations. 

This biased sampling reduces the representativeness of training data and limits the accuracy of 

predictions, especially in remote regions (Hengl et al., 2015). 

(vii) Scale and Resolution Mismatch: Mismatches between the scale of environmental covariates 

(e.g., DEM, satellite images) and the true variability of soil properties can reduce model accuracy. 

Coarse-resolution data may fail to capture fine-scale soil variation, while very high-resolution 

data can introduce noise and increase computational demands (Arrouays et al., 2014). 
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(viii) Legacy Data Integration: Incorporating older soil survey data remains difficult due to differ-

ences in sampling depth, analytical techniques, and classification systems. Harmonizing these 

datasets is necessary but often resource-intensive and uncertain, especially when metadata are 

incomplete (Hengl et al., 2017). 

(ix) Remote Sensing Limitations: Remote sensing data are widely used as environmental covariates 

in DSM, yet they face challenges such as cloud cover, atmospheric effects, and vegetation mask-

ing. Additionally, optical sensors cannot directly measure subsurface soil properties, limiting 

their usefulness for certain mapping goals (Mulder et al., 2011). 

(x) Model Transferability Across Regions: DSM models often perform well in the specific area 

where they are trained but show limited applicability when transferred to new regions with dif-

ferent soil-forming factors. This lack of generalization reduces the scalability of DSM approaches 

(Minasny & McBratney, 2016). 

 

Future Prospects 

(i) Advancements in Remote Sensing: The growing availability of high-resolution remote sensing 

data presents significant opportunities for DSM. Future sensors with improved spectral and spa-

tial resolutions will deliver more detailed environmental covariates, enhancing the precision of 

soil property predictions. Moreover, incorporating time-series remote sensing data will capture 

temporal changes, further refining DSM models (Richer-de-Foeges et al., 2023).  

(ii) Integration of Machine Learning and Process-Based Models: Integrating machine learning 

techniques with process-based soil models can capitalize on the strengths of both approaches. 

While machine learning is effective at detecting patterns in large datasets, process-based models 

bring a mechanistic understanding of soil processes. This combined approach can enhance pre-

diction accuracy and offer valuable insights into the underlying soil dynamics (Wadoux et al., 

2020). 

(iii) Crowdsourcing and Citizen Science: Involving the public in soil data collection through 

crowdsourcing initiatives can significantly improve data availability for DSM. Citizen science 

projects, supported by mobile technologies, can collect soil observations on an unparalleled scale. 

However, ensuring data quality and establishing protocols for incorporating crowd-sourced data 

into DSM remain important areas for further research (Thompson et al., 2020). 

(iv) Development of Open-Source Tools: The development and distribution of open-source DSM 

tools can make advanced mapping techniques more accessible to a wider audience. These tools 

can support capacity building, particularly in resource-limited areas, and encourage standardiza-

tion in DSM practices. Collaborative platforms can also promote knowledge sharing and innova-

tion within the DSM community (Chen et al., 2022). 

(v) Policy Support and Funding: Gaining policy support and securing funding are essential for the 

long-term development of DSM initiatives. Advocacy emphasizes the significance of accurate 

soil data for agriculture, environmental management, and climate change mitigation can help 

attract investment. Partnerships between government agencies, academic institutions, and inter-

national organizations can provide the necessary resources and frameworks to advance DSM 

(Thompson et al., 2020). 

Discussion 

Digital Soil Mapping (DSM) has revolutionized the collection, analysis, and application of soil data 

in various fields such as agriculture, environmental management, and land-use planning. However, its 
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effectiveness depends on addressing key challenges and leveraging technological advancements to en-

hance accuracy and usability. One major challenge is the availability and quality of soil data, particu-

larly in developing regions where high-resolution datasets are lacking, affecting the reliability of digital 

soil maps (Arrouays et al., 2014). Advancements in remote sensing and open-source soil databases can 

help bridge this gap, while citizen science and crowdsourced data offer potential solutions, albeit with 

concerns about data quality (Richer-de-Foeges et al., 2023). 

The choice of predictive models also plays a crucial role, as machine learning algorithms have 

significantly improved mapping accuracy, but balancing complexity and interpretability remains a chal-

lenge. While deep learning techniques could enhance predictive capabilities, their success relies on 

computational resources and structured training datasets, necessitating a fusion of traditional pedologi-

cal knowledge with data-driven models for better trust and usability (Wadoux et al., 2020). 

Additionally, uncertainty in DSM predictions remains a limitation, as many studies fail to clearly 

quantify prediction errors, making it difficult for end-users to confidently apply results. Standardizing 

uncertainty quantification and incorporating probabilistic modeling can address this issue, while visual 

tools can improve communication of uncertainty to non-experts (McBratney et al., 2003). 

The integration of remote sensing and GIS-based approaches is crucial for the future of DSM, with 

high-resolution satellite imagery from missions like Sentinel and Landsat providing valuable environ-

mental covariates for improved model predictions (Richer-de-Foeges et al., 2023). Combining time-

series remote sensing data with DSM can also capture temporal soil changes, enhancing accuracy. Fur-

thermore, government policies and funding play a critical role in advancing DSM applications, with 

investments in national soil databases and open-source DSM tools democratizing access to high-quality 

soil information. Strengthening collaboration between researchers, policymakers, and local communi-

ties is essential for promoting the effective use of DSM in sustainable land management and precision 

agriculture (Thompson et al., 2020). 

 

Conclusion 

Digital Soil Mapping (DSM) has transformed soil science by providing high-resolution, data-driven 

solutions to soil mapping challenges. By integrating environmental variables, remote sensing, and ad-

vanced computational techniques, DSM has improved soil information accuracy and usability across 

agriculture, land-use planning, and environment management. However, challenges such as data avail-

ability, model selection, and uncertainty quantification remain. Addressing these requires advancements 

in remote sensing, machine learning, and process-based modeling, alongside stronger collaboration be-

tween scientists, policymakers, and local communities. Open-source DSM tools and citizen science 

initiatives can further enhance data accessibility and applicability. The future of DSM depends on tech-

nological innovations, interdisciplinary research, and policy support. As machine learning and big data 

analytics evolve, DSM models will become more accurate and efficient. Expanding government fund-

ing and policy frameworks will ensure broader access to reliable soil information.  

By identifying key barriers and opportunities, this research highlights DSM’s potential to revolu-

tionize soil science and contribute to sustainable agriculture, environmental conservation, and effective 

land management. To maximize its impact, governments should standardize soil data collection, in-

crease investments in remote sensing and capacity-building programs, and promote public-private col-

laborations. Stakeholders, including farmers and environmental planners, should integrate DSM into 

decision-making, support citizen science, and invest in geospatial technologies. Future research should 

focus on refining machine learning models, improving uncertainty quantification, integrating multi-

source data, and enhancing long-term soil monitoring. Strengthening these efforts will ensure DSM’s 

reliability, accessibility, and role in sustainable land and environmental management. 
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